Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
1.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

2.
World J Stem Cells ; 16(3): 267-286, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38577236

RESUMO

BACKGROUND: The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM: To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS: A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS: The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION: LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.

3.
EBioMedicine ; 103: 105099, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604089

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS: Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS: Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION: The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING: This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).

5.
MedComm (2020) ; 5(5): e550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645662

RESUMO

Three-dimensional (3D) echocardiography is an emerging technique for assessing right ventricular (RV) volume and function, but 3D-RV normal values from a large Chinese population are still lacking. The aim of the present study was to establish normal values of 3D-RV volume and function in healthy Chinese volunteers. A total of 1117 Han Chinese volunteers from 28 laboratories in 20 provinces of China were enrolled, and 3D-RV images of 747 volunteers with optimal image quality were ultimately analyzed by a core laboratory. Both vendor-dependent and vendor-independent software platforms were used to analyze the 3D-RV images. We found that men had larger RV volumes than women did in the whole population, even after indexing to body surface area, and older individuals had smaller RV volumes. The normal RV volume was significantly smaller than that recommended by the American Society of Echocardiography/European Association of Cardiovascular Imaging guidelines in both sexes. There were significant differences in 3D-RV measurements between the two vendor ultrasound systems and the different software platforms. The echocardiographic measurements in normal Chinese adults II study revealed normal 3D-RV volume and function in a large Chinese population, and there were significant differences between the sexes, ages, races, and vendor groups. Thus, normal 3D-RV values should be stratified by sex, age, race, and vendor.

6.
Pest Manag Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656531

RESUMO

BACKGROUND: The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major potato (Solanum tuberosum) pest, infesting over 16 million km2 and causing substantial economic losses. The insect cuticle forms an apical extracellular matrix (ECM) envelope covering exposed organs to direct morphogenesis and confer structural protection. While select chitinase (Cht) genes have proven essential for larval development, their potential activities directing ECM remodeling underlying adult wing maturation remain undefined. RESULTS: We investigated the expression patterns and performed an oral RNA interference (RNAi) screen targeting 19 LdChts in late-instar L. decemlineata larvae. Subsequently, we assessed their effects on adult eclosion and wing characteristics. Knockdown of LdCht5, LdCht7, LdCht10, LdIDGF2, and LdIDGF4, as well as others from group IV (LdCht15, LdCht12, LdCht17, and LdCht13) and group VII-X (LdCht2, LdCht11, LdCht1, and LdCht3), resulting in shrunken, misshapen elytra with reduced areal density, as well as transverse wrinkling and impaired wing-tip folding in hindwings. Scanning electron micrographs revealed eroded elytral ridges alongside thinned, ruptured hindwing veins, indicative of mechanical fragility post-LdCht suppression. Spectroscopic analysis uncovered biomolecular alterations underlying the elytral anomalies, including decreases in peaks representing chitin, proteins, and lipids. This loss of essential extracellular matrix components provides evidence for the fragility, wrinkling, and shrinkage observed in the RNAi groups. CONCLUSION: Our findings elucidate the crucial role of chitinases in the turnover of chitinous cuticles on beetle wings, offering insights into RNAi-based control strategies against this invasive pest. This article is protected by copyright. All rights reserved.

7.
Langmuir ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651309

RESUMO

Corrosion protection of metal has become an important and urgent topic, which requires the development of an inexpensive, environmentally friendly, and highly efficient corrosion inhibitor. Herein, a sweet potato leaf extract (SPL) was obtained by a simple water-based extraction method and then as a green corrosion inhibitor for 6N01 Al alloy in the seawater was well investigated by the weight loss method and various electrochemical tests. Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectroscopies were carried out to investigate the compositions of SPL. The findings from the potentiodynamic polarization (PDP) curves suggest that SPL functions as a typical mixed-type corrosion inhibitor. Notably, the maximum corrosion inhibition efficiency reaches 94.6% following a 36 h immersion period at 25 °C. The adsorption behavior of SPL on the Al alloy surface belongs to the Langmuir adsorption isotherm. The Gibbs free energy value illustrates that the adsorption of SPL contains both physisorption and chemisorption. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) indicate that SPL is firmly attached to the Al alloy surface by making a protective layer, which can effectively inhibit the corrosion of the Al alloy in the seawater. Furthermore, quantum chemical calculations were applied to validate the chemical adsorption and elucidate the relationship between the electronic structure of the active components in SPL and their effectiveness in corrosion inhibition.

8.
Gastroenterol. hepatol. (Ed. impr.) ; 47(4): 366-376, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-231803

RESUMO

Background: Inflammasome activation is known to be involved in nonalcoholic steatohepatitis (NASH). Vinpocetine is a derivative of vincamine and is reported to suppress the activation of inflammasome. Methods: This study explored the therapeutical potential of Vinpocetine on NASH. Mice were fed with a choline-deficient (MCD) or chow diet in the presence or absence of Vinpocetine for 8 weeks. H&E staining and biochemical assays were determined to evaluate the hepatic steatosis and fibrosis symptoms. In addition, primary hepatocytes and Kupffer cells were isolated and induced by MCD or lipopolysaccharides/cholesterol crystals with or without Vinpocetine. ELISAs, qPCR, and Western blotting were applied to determine the levels of NASH-related biomarkers in both in vivo mouse model and in vitro cell models. Results: Treatment of Vinpocetine did not cause observable side effects against and MCD-induced cells and mouse NASH model. However, treatment of Vinpocetine ameliorated hepatic steatosis and fibrosis and suppressed the levels of alanine transaminase and aspartate transferase in the mouse NASH model. In addition, treatment of Vinpocetine suppressed the mRNA and protein levels of inflammasome components both in vitro and in vivo. Conclusion: Vinpocetine suppressed NASH in mice by mediating inflammasome components via nuclear factor κB signaling. (AU)


Antecedentes: Se sabe que la activación del inflamasoma está implicada en la esteatohepatitis no alcohólica (EHNA). La vinpocetina es un derivado de la vincamina que, según los informes, suprime la activación del inflamasoma. Métodos: Este estudio exploró el potencial terapéutico de la vinpocetina en la EHNA. Durante 8 semanas se alimentó a ratones con una dieta deficiente en colina (MCD) o con una dieta chow en presencia o ausencia de vinpocetina. Se realizaron tinciones de H&E y ensayos bioquímicos para evaluar los síntomas de esteatosis hepática y fibrosis. Además, se aislaron hepatocitos primarios y células de Kupffer y se indujeron mediante MCD o cristales de lipopolisacáridos/colesterol con o sin vinpocetina. Se aplicaron ELISA, qPCR y Western blotting para determinar los niveles de biomarcadores relacionados con la EHNA tanto en el modelo de ratón in vivo como en los modelos celulares in vitro. Resultados: El tratamiento con vinpocetina no causó efectos secundarios observables contra las células y el modelo de ratón de EHNA inducidos por MCD. Sin embargo, el tratamiento con vinpocetina mejoró la esteatosis hepática y la fibrosis y suprimió los niveles de alanina transaminasa y de aspartato transferasa en el modelo de EHNA de ratón. Además, el tratamiento con vinpocetina suprimió los niveles de ARNm y proteínas de los componentes del inflamasoma tanto in vitro como in vivo. Conclusiones: La vinpocetina suprimió la EHNA en ratones por mediación de los componentes del inflamasoma a través de la señalización del factor nuclear κB. (AU)


Assuntos
Camundongos , Inflamassomos , Inflamação , Vincamina , Fígado Gorduroso , Fibrose , Hepatócitos , Células de Kupffer
9.
J Sci Food Agric ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441287

RESUMO

BACKGROUND: During the brewing of soy sauce, the conversion of multiple substances is driven by various microorganisms and their secreted enzyme systems. Soy sauce mash is an important source of enzyme systems during moromi fermentation, but the changes of enzyme systems in soy sauce mash during moromi fermentation are poorly understood. In order to explore the predominant enzyme systems existing during moromi fermentation and to explain the characteristics of the enzyme system changes, an enzymatic activities assay and 4D-label-free proteomics analysis were conducted on soy sauce mash at different stages of fermentation. RESULTS: The activities of hydrolytic enzymes in soy sauce mash decreased continuously throughout the fermentation process, while most of the characteristic physicochemical substances in soy sauce mash supernatant had already accumulated at the early stage of fermentation. Four hydrolytic enzymes were found to be positively correlated with important physicochemical indexes by principal component analysis and Pearson correlation analysis. The proteomics analysis revealed three highly upregulated enzymes and two enzymes that were present in important metabolic pathways throughout the fermentation process. Furthermore, it was found that Aspergillus oryzae was able to accumulate various nutrients in the soy sauce mash by downregulating most of its metabolic pathways. CONCLUSION: Enzymes present with excellent properties during the moromi fermentation period could be obtained from these results. Meanwhile, the characterization of the metabolic pathways of microorganisms during the moromi fermentation period was revealed. The results provide a basis for more scientific and purposeful improvement of moromi fermentation in the future. © 2024 Society of Chemical Industry.

10.
Nucleic Acids Res ; 52(6): 3433-3449, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38477394

RESUMO

The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/genética , Fatores de Virulência/genética
11.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543480

RESUMO

The common adverse effects and the complicated administration of tetracycline and metronidazole greatly affect the clinical application of the classical bismuth quadruple therapy (BQT) for Helicobacter pylori eradication. This pilot study aimed to evaluate the efficacy and safety of minocycline/amoxicillin-based BQT for H. pylori eradication. Firstly, consecutive H. pylori isolates collected at West China Hospital of Sichuan University between 2018 and 2021 were included for susceptibility testing of tetracycline and minocycline using E-test strips. Secondly, both treatment-naïve and experienced patients were included to receive a 14-day minocycline/amoxicillin-based BQT: esomeprazole 40 mg or vonoprazan 20 mg, bismuth colloidal pectin 300 mg, amoxicillin 1000 mg, and minocycline 100 mg, all given twice daily. Among a total of 101 H. pylori isolates, tetracycline resistance was 3.0%, whereas minocycline resistance was nil. A total of 114 patients (treatment-naïve/experienced, 72/42) received the minocycline/amoxicillin-based BQT. The overall intention-to-treat (ITT) and per protocol (PP) eradication rates were 94.7% (108/114) and 97.3% (108/111), respectively. The ITT and PP eradication rates were 91.7% (66/72) and 95.7% (66/69) among the treatment-naïve patients, and both were 100.0% among the treatment-experienced patients. No serious adverse event was recorded. This pilot study suggests that minocycline/amoxicillin-based BQT is an excellent therapy for H. pylori eradication.

12.
World J Gastrointest Oncol ; 16(2): 493-513, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425392

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis. Resveratrol, a non-flavonoid polyphenolic compound found in a variety of Chinese medicinal materials, has shown excellent anti-GC effect. However, its exact mechanisms of action in GC have not been clarified. AIM: To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms. METHODS: Action targets of resveratrol and GC-related targets were screened from public databases. The overlapping targets between the two were confirmed using a Venn diagram, and a "Resveratrol-Target-GC" network was constructed using Cytoscape software version 3.9.1. The protein-protein interaction (PPI) network was constructed using STRING database and core targets were identified by PPI network analysis. The Database for Annotation, Visualization and Integrated Discovery database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A "Target-Pathway" network was created by using Cytoscape 3.9.1. The RNA and protein expression levels of core target genes were observed using the Cancer Genome Atlas and the Human Protein Atlas databases. DriverDBv3 and Timer2.0 databases were used for survival and immune infiltration analysis. Subsequently, the findings were further verified by molecular docking technology and in vitro experiments. RESULTS: A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases, and 181 intersection targets between the two were screened by Venn diagram. The top 20 core targets were identified by PPI network analysis of the overlapping targets. GO function analysis mainly involved protein binding, identical protein binding, cytoplasm, nucleus, negative regulation of apoptotic process and response to xenobiotic stimulus. KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, ErbB signaling pathway, etc. FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were selected by differential expression analysis, and they were closely associated with immune infiltration. Molecular docking results showed that resveratrol docked well with these two targets. Resveratrol treatment arrested the cell cycle at the S phase, induced apoptosis, and weakened viability, migration and invasion in a dose-dependent manner. Furthermore, resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression. CONCLUSION: The anti-GC effects of resveratrol are related to the inhibition of cell proliferation, migration, invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.

13.
Cancer Manag Res ; 16: 87-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344113

RESUMO

Currently, lung cancer remains one of the deadliest cancers, with a very high mortality rate, accounting for approximately 18% of all cancer-related deaths. Non-small cell lung cancer (NSCLC) accounts for 80% of all lung cancer deaths. In particular, elderly patients generally have poor tolerance to chemotherapy or cannot tolerate chemotherapy. This case analysis focuses on an elderly patient with non-small cell lung cancer stage IV. The patient was an 86-year-old female with poor nutritional status and low body weight (27 kg) and could not tolerate platinum-based dual-drug first-line chemotherapy. This patient had tumour cells in alveolar lavage fluid without conditions examined for pd-l1 expression. However, the efficacy of previous first-line immunotherapy was positive, and the patient and his family members agreed to apply it, so there was no contraindication to apply anlotinib + pembrolizumab. Results were reviewed after two cycles, and CR was used to evaluate the efficacy. After four cycles, the efficacy was evaluated as complete remission (CR), the patient developed immune-related side effects, immunotherapy was suspended, and maintenance therapy with anlotinib was used. The most recent review was in 2023-6-9, and PET/CT indicated that the patient had sustained CR. In general, this case provides support for the successful possibility of a treatment strategy for elderly patients with poor physical fitness who cannot tolerate platinum-based doublet chemotherapy and who have driver gene-negative squamous cell lung cancer (PS>0-1).

14.
Small ; : e2309537, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323716

RESUMO

Unavoidable damage to normal tissues and tumor microenvironment (TME) resistance make it challenging to eradicate breast carcinoma through radiotherapy. Therefore, it is urgent to develop radiotherapy sensitizers that can effectively reduce radiation doses and reverse the suppressive TME. Here, a novel biomimetic PEGylated Cu2 WS4 nanozyme (CWP) with multiple enzymatic activities is synthesized by the sacrificing template method to have physical radiosensitization and biocatalyzer-responsive effects on the TME. Experiment results show that CWP can improve the damage efficiency of radiotherapy on breast cancer cell 4T1 through its large X-ray attenuation coefficient of tungsten and nucleus-penetrating capacity. CWP also exhibit strong Fenton-like reactions that produced abundant ROS and GSH oxidase-like activity decreasing GSH. This destruction of redox balance further promotes the effectiveness of radiotherapy. Transcriptome sequencing reveals that CWP induced ferroptosis by regulating the KEAP1/NRF2/HMOX1/GPX4 molecules. Therefore, owing to its multiple enzymatic activities, high-atomic W elements, nucleus-penetrating, and ferroptosis-inducing capacities, CWP effectively improves the efficiency of radiotherapy for breast carcinoma in vitro and in vivo. Furthermore, CWP-mediated radiosensitization can trigger immunogenic cell death (ICD) to improve the anti-PD-L1 treatments to inhibit the growth of primary and distant tumors effectively. These results indicate that CWP is a multifunctional nano-sensitizers for radiotherapy and immunotherapy.

15.
J Am Chem Soc ; 146(9): 5952-5963, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408428

RESUMO

The ability of alkylamines to spontaneously liberate hydride ions is typically restrained, except under specific intramolecular reaction settings. Herein, we demonstrate that this reactivity can be unlocked through simple treatment with formaldehyde in hexafluoroisopropanol (HFIP) solvent, thereby enabling various intermolecular hydride transfer reactions of alkylamines under mild conditions. Besides transformations of small molecules, these reactions enable unique late-stage modification of complex peptides. Mechanistic investigations uncover that the key to these intermolecular hydride transfer processes lies in the accommodating conformation of solvent-mediated macrocyclic transition states, where the aggregates of HFIP molecules act as dexterous proton shuttles. Importantly, negative hyperconjugation between the lone electron pair of nitrogen and the antibonding orbital of amine's α C-H bond plays a critical role in the C-H activation, promoting its hydride liberation.

16.
Metallomics ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183290

RESUMO

Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of non-small cell lung cancer. Here, we designed, synthesized, and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7)and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of human lung adenocarcinoma cisplatin-resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the NF-E2-related factor 2 gene, leading to the inhibition of downstream multidrug resistance-associated protein 1 expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Compostos Organometálicos , Rutênio , Animais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Rutênio/química , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Peixe-Zebra/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico
17.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180110

RESUMO

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Piretrinas/farmacologia , Nitrilas/farmacologia , Mutação , Canais de Sódio Disparados por Voltagem/genética , Expressão Gênica , Inseticidas/farmacologia , Resistência a Inseticidas/genética
18.
Drug Metab Rev ; 56(1): 62-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226647

RESUMO

Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/ß-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.


Assuntos
Melatonina , Neoplasias , Humanos , Melatonina/uso terapêutico , Melatonina/metabolismo , Transdução de Sinais , Biologia , Neoplasias/tratamento farmacológico
19.
BMC Cancer ; 24(1): 53, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200408

RESUMO

BACKGROUND: HBV infection is the leading risk factor for HCC. HBV infection has been confirmed to be associated with the exhaustion status of CD8+ T cells and immunotherapeutic efficacy in HCC. In this study, we aimed to investigate the prognostic value of the CD8+ T-cell exhaustion signature and immunotherapy response in patients with HBV-related HCC. METHODS: We identified different clusters of HBV-related HCC cells by single-cell RNA sequencing (scRNA-seq) and identified CD8+ T-cell exhaustion-related genes (TERGs) by pseudotime analysis. We conducted differential expression analysis and LASSO Cox regression to detect genes and construct a CD8+ T-cell exhaustion index (TEI). We next combined the TEI with other clinicopathological factors to design a prognostic nomogram for HCC patients. We also analysed the difference in the TEI between the non-responder and responder groups during anti-PD-L1 therapy. In addition, we investigated how HBV induces CD8+ T lymphocyte exhaustion through the inhibition of tyrosine metabolism in HCC using gene set enrichment analysis and RT‒qPCR. RESULTS: A CD8+ T-cell exhaustion index (TEI) was established with 5 TERGs (EEF1E1, GAGE1, CHORDC1, IKBIP and MAGOH). An AFP level > 500 ng, vascular invasion, histologic grade (G3-G4), advanced TNM stage and poor five-year prognosis were related to a higher TEI score, while HBV infection was related to a lower TEI score. Among those receiving anti-PD-L1 therapy, responders had lower TEIs than non-responders did. The TEI also serves as an independent prognostic factor for HCC, and the nomogram incorporating the TEI, TNM stage, and vascular invasion exhibited excellent predictive value for the prognosis in HCC patients. RT‒qPCR revealed that among the tyrosine metabolism-associated genes, TAT (tyrosine aminotransferase) and HGD (homogentisate 1,2 dioxygenase) were expressed at lower levels in HBV-HCC than in non-HBV HCC. CONCLUSION: Generally, we established a novel TEI model by comprehensively analysing the progression of CD8+ T-cell exhaustion, which shows promise for predicting the clinical prognosis and potential immunotherapeutic efficacy in HBV-related HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Linfócitos T CD8-Positivos , Exaustão das Células T , Neoplasias Hepáticas/genética , Prognóstico , Análise de Sequência de RNA , Tirosina , RNA
20.
Artigo em Inglês | MEDLINE | ID: mdl-38261661

RESUMO

BACKGROUND: Children are especially vulnerable to Toxocara infection and its severe complications; however, there have not been any published data on the disease prevalence and treatment effectiveness in the population of Vietnamese children. This study was conducted to determine the prevalence of toxocariasis and explore factors associated with Toxocara infection in children aged 3-15 y in Ho Chi Minh City, Vietnam. METHODS: We conducted a cross-sectional study using a multistage cluster sampling approach in public schools. Blood samples were collected, and toxocariasis cases were confirmed, based on a history of contact with dogs/cats and positive anti-Toxocara antibody detection via ELISA. We calculated the percentage of seropositive children across gender, grade levels, districts and caregiver education. Multiple regression models were employed to identify potential risk factors. RESULTS: Anti-Toxocara antibodies were found in 14.2% of the 986 children studied. Significant variations in seropositivity were observed across grade levels, districts and caregiver education levels. Multivariable analysis identified caregiver education, contact with dogs/cats and improper handling of pet feces as seropositivity risk factors. CONCLUSION: This was the first community-based prevalence study of toxocariasis in a pediatric population in Vietnam. Implementation of preventive measures such as public education, routine fecal examinations and chemotherapeutic treatment of animals is highly recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...